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Abstract

Mosaicism in fragile X syndrome (FXS) refers to two different FMR1 allele variations: size 

mosaicism represents different numbers of CGG repeats between the two alleles, such that 

in addition to a full mutation allele there is an allele in the normal or premutation range of 

CGG repeats, while methylation mosaicism indicates whether a full-mutation allele is fully or 

partially methylated. The present study explored the association between mosaicism type and 

cognitive and behavioral functioning in a large sample of males 3 years and older (n = 487) 

with FXS, participating in the Fragile X Online Registry with Accessible Research Database. 

Participants with methylation mosaicism were less severely cognitively affected as indicated by 

a less severe intellectual disability rating, higher intelligence quotient and adaptive behavior 

score, and lower social impairment score. In contrast, the presence of size mosaicism was not 

significantly associated with better cognitive and behavioral outcomes than full mutation. Our 
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findings suggest that methylation mosaicism is associated with better cognitive functioning and 

adaptive behavior and less social impairment. Further research could assess to what extent these 

cognitive and behavioral differences depend on molecular diagnostic methods and the impact of 

mosaicism on prognosis of individuals with FXS.
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1 ∣ INTRODUCTION

Fragile X syndrome (FXS) is the most prevalent inherited form of intellectual disability 

and is associated with autism spectrum disorder (Hunter et al., 2014). FXS results from 

an unstable expansion of a cytosine–guanine–guanine (CGG) nucleotide sequence in the 

promoter region of the FMR1 gene (Tassanakijpanich et al., 2021). The FMR1 gene product 

is FMRP, an RNA-binding protein that regulates protein synthesis at synapses (Bagni & 

Zukin, 2019) and, therefore, plays a critical role in brain development and synaptic plasticity 

(Martin & Huntsman, 2012). In the vast majority of cases, deficient or absent FMRP is 

the basis for the FXS phenotype (Bassell & Warren, 2008). FMR1 alleles containing <45 

CGG repeats are considered normal. Alleles with CGG repeat expansions in the 55–200 

range are termed “premutation” alleles and are associated with FMR1 expression and FMRP 

synthesis, although mRNA levels may be elevated and FMRP reduced, particularly for 

larger allele sizes within the premutation range. Premutation alleles are associated with 

fragile X-associated primary ovarian insufficiency (FXPOI), fragile X-associated tremor/

ataxia syndrome (FXTAS), and other less distinctive neurologic phenotypes (Hagerman et 

al., 2009; Hagerman & Hagerman, 2021). Alleles with CGG repeat expansions of >200 are 

termed “full mutation” and are associated with atypical FMR1 methylation and the resulting 

partial or complete silencing of the gene, which leads to decreased or absent FMRP and the 

clinical features of FXS (Hagerman et al., 2009; Jin & Warren, 2000).

Because of the instability of the CGG repeat during transmission across generations, 

individuals can be comprised of a mixture of cells in which a proportion have a normal or 

premutation FMR1 allele and the remaining cells have a full-mutation allele. This situation 

is termed size mosaicism and, while FMRP levels in individuals with size mosaicism may 

be higher than in individuals with only full-mutation alleles, FMRP production only occurs 

in those cells with the normal or premutation allele (Kumari & Usdin, 2020). Furthermore, 

FMR1 mRNA gain-of-function or repeat-associated non-AUG translation-related toxicity 

can occur, as seen in FXPOI and FXTAS (Glineburg et al., 2018; Rajaratnam et al., 

2017). The process of FMR1 silencing through gene methylation may not occur equally 

in all cells. This situation is the basis for a second type of FMR1 mosaicism: methylation 
mosaicism, in which the full-mutation allele escapes methylation and can produce FMRP 

in a variable proportion of cells (Hagerman et al., 2009; Kumari & Usdin, 2020). Both size 

and methylation mosaicism can be present, but regardless of mosaicism status, individuals 

with an FMR1 full mutation will almost universally show a reduction in FMRP level and are 

categorized as having FXS.
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Mosaicism is a source of molecular, systemic, and neurobehavioral phenotypical variability 

that can be observed in both sexes. The reported mosaicism incidence in males with FXS 

varies widely from 12% to 41%, most likely reflecting the sensitivity of the method used 

for detecting mosaicism (Nolin et al., 1994). While size or methylation mosaicism is not 

always incorporated into the assessment of clinical prognosis due to wide inter-individual 

variation of the impact of mosaicism on the phenotype, it could have consequences on 

the overall severity of the disorder in terms of physical impairment and neurobehavioral 

functioning across a large group of individuals with FXS. Literature findings on the 

relationship between FMR1 mosaicism and cognitive and behavioral outcomes are mixed. 

Some publications have reported higher cognitive functioning and more advanced adaptive 

skills in patients with FXS who have mosaicism compared to nonmosaic FXS (Cohen et 

al., 1996; Merenstein et al., 1996; Pretto, Yrigollen, et al., 2014; Staley et al., 1993), while 

other studies did not show differences between males with mosaic and non-mosaic FXS 

(Backes et al., 2000; de Vries et al., 1993; Harris et al., 2008; Rousseau et al., 1994). 

Previous studies have also reported the associations of mosaicism type with cognitive and 

behavioral outcomes. Data consistently show an inverse correlation between methylation 

level and intellectual functioning, (Basuta et al., 2015; Hagerman et al., 1994; Pandelache 

et al., 2019; Pretto, Yrigollen, et al., 2014; Wöhrle et al., 1998) with males with FXS 

having completely or near completely unmethylated full-mutation alleles showing typical 

intellectual development (Basuta et al., 2015; Hagerman et al., 1994; Wöhrle et al., 1998). 

On the other hand, studies on size mosaicism have arrived at mixed conclusions. Some 

studies suggest that the presence of a normal or premutation allele does not compensate 

for cognitive or behavioral dysfunction associated with FMR1 full mutation (de Vries et 

al., 1993; Jiraanont et al., 2017), whereas others suggest that males with FXS who have 

size mosaicism perform better on tests of intelligence than individuals without this type 

of mosaicism (Baker et al., 2019; Merenstein et al., 1996). These varied findings are 

likely dependent on the percentage of cells in the brain that are expressing the normal 

or premutation allele.

Research on a large sample of individuals with FXS could provide a clearer understanding 

of the impact of FMR1 full-mutation mosaicism on cognitive, behavioral, and other types of 

functioning. Thus, the purpose of the present investigation is to characterize and compare the 

impact of size mosaicism and methylation mosaicism on cognitive and behavioral outcomes, 

including intelligence, adaptive behavior, aberrant behaviors, and autism-related social 

impairment in males with FXS using clinicians' evaluations and standardized assessments. In 

addition, the present study also investigated whether males with FXS and mosaicism have 

better cognitive and behavioral outcomes than those without mosaicism.

2 ∣ METHODS

2.1 ∣ Population and procedures

Data analyzed for this study were from Fragile X Online Registry with Accessible Research 

Database (FORWARD), a registry and longitudinal database funded by the Centers for 

Disease Control and Prevention. FORWARD includes standardized clinician- and parent-

report forms and standardized caregiver-reported instruments (e.g., Aberrant Behavior 
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Checklist—Community, Social Responsiveness Scale, etc.) submitted by 25 FXS specialty 

clinics across the United States participating in the Fragile X Clinical and Research 

Consortium from 2009 through 2018 (Liu et al., 2016). Full details on the creation, 

enrollment, and data collection for FORWARD are reported in an earlier publication 

(Sherman et al., 2017).

The analyses for this study utilized baseline data from FORWARD Version 4, obtained from 

1471 individuals with FXS (i.e., FMR1 full-mutation allele) evaluated from 2012 through 

2019. The FORWARD Version 4 data are currently housed at the Centers for Disease 

Control and Prevention and are not available for public use. The study was approved by the 

institutional review board for each participating FXS clinic where data were collected, and 

written informed consent was obtained from primary caregivers or adult patients who were 

their own guardians. Due to the focus of this study, only male participants 3 years and older 

(n = 954) for whom both size and methylation mosaic status were available were included in 

analyses (n = 487).

2.2 ∣ Measures

2.2.1 ∣ Predictor variables

Size and methylation mosaic status: Size mosaicism was determined with two items: (1) 

“Is the individual a repeat allele mosaic (e.g., pre/full, intermediate/full, normal/full)?” with 

answers “0 = no,” “1 = yes,” and “2 = not available;” and (2) “What is the repeat size 

of the non-full mutation allele?” with a response between 1 and 200. Methylation mosaic 

status was determined by one clinician-reported item: “What is the methylation status of the 

full mutation?” with response options “0=fully methylated (without methylation mosaic),” 

“1 = methylation mosaic,” “2=unspecified abnormal methylation,” and “3 = not available.” 

Individuals with responses “2” and “3” were omitted from the analysis. Mosaicism in the 

study was assayed in blood samples, the information for which clinicians gathered from the 

FMR1 genetic report produced for FXS diagnostic purposes. When the information was not 

specified in the test report, mosaicism was indicated as “don't know/not available.”

2.2.2 ∣ Outcome variables

Severity of intellectual disability and ASD diagnoses: Clinician-reported severity of 

intellectual disability (ID) and autism spectrum disorder (ASD) diagnosis, including age 

at evaluation, were included as outcome variables. Severity of ID was assessed using one 

item: “Which of these terms best describes the intellectual function of the child currently?” 

The response options include “1 = no ID,” “2 = borderline ID,” “3 = mild ID,” “4 = 

moderate ID,” “5 = severe ID,” and “6 = profound ID.” Thus, severity of ID was treated 

as a continuous outcome variable in analyses. Among 487 participants with reported mosaic 

status, 428 participants 3 years of age and older with clinician-reported severity of ID 

were included in the ANCOVA model. ASD diagnosis was performed by the clinician 

using Diagnostic and Statistical Manual of Mental Disorders, fourth edition, text revision 

(DSM-IV-TR) or DSM, fifth edition (DSM-V) criteria and reported using one item: “Based 

on this clinic assessment, does this child currently have a diagnosis of ASD?” with binary 

answers “0 = no” and “1 = yes.” Among 487 participants with reported mosaic status, 448 

participants had ASD diagnosis reported.
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Intelligence quotient: Intelligence quotient (IQ) scores were obtained from one of two 

age-appropriate batteries reported by clinicians: the Stanford-Binet Scale—Fifth Edition 

(SB5) or the Wechsler Intelligence Scales (Groth-Marnat et al., 2000; Roid & Pomplun, 

2012). Of the 487 males with FXS, 172 participants had age of testing and full-scale IQ 

(FSIQ) scores reported. Based on classifications of ID and distribution of IQ scores, the 

latter were treated in the analyses as a dichotomous outcome variable with two categories: 

“0=IQ test scores under 55” and “1=IQ test scores above or equal to 55.” This IQ level 

corresponds to the cut-off for mild ID (55–69) on the SB5 (Matthews et al., 2015).

Adaptive skills: Adaptive skills were measured by the Vineland Adaptive Behavior Scales

—2nd or 3rd Edition (Vineland-II, Vineland-3; here termed Vineland) published by Pearson 

(Sparrow et al., 1984). The Vineland changed versions in 2015, and our data are a mix of 

Vineland-II and Vineland-3 depending on when the assessments were done over the 7-year 

period. Moderate concordance was observed between Vineland-II and Vineland-3 (Farmer 

et al., 2020). Composite scores and four domain scores were reported by participants' 

clinicians. Out of the 487 males with FXS, 173 had their Vineland composite scores 

reported. Age when an informant, typically caregiver, completed the questionnaire was also 

documented. The Vineland is a semi-structured interview to evaluate adaptive behavior in 

four domains: communication, socialization, daily living skills, and motor skills. A higher 

score indicates a higher level of adaptive behavior. The Vineland composite score was 

treated as a continuous outcome variable in the analyses.

Problem behaviors: The Aberrant Behavior Checklist—Community Edition (ABC-C), a 

questionnaire published by Slosson, was used to evaluate a wide range of problem behaviors 

(Aman & Singh, 1986). Out of the 487 males with FXS, 414 participants had a completed 

ABC-C questionnaire. Age of the participant when an informant, typically a caregiver, 

completed the questionnaire was also documented. The ABC-C is the most widely used 

measure of aberrant behavior in individuals with ID, with higher scores indicating more 

aberrant behavior (Kaat et al., 2014; Schmidt et al., 2013). While applied in its original 

version in multiple FXS studies, the ABC-C has been adapted for the disorder using a 

scoring method based on 55 out of the 58 original items (ABCFX) (Sansone et al., 2012). 

The original ABC-C consists of five subscales: Irritability, Social Withdrawal, Stereotypic 

Behavior, Hyperactivity/Noncompliance, and Inappropriate Speech. The ABCFX includes an 

additional subscale: Social Avoidance. Both total and the 6 ABCFX subscale scores were 

analyzed and were treated as continuous outcome variables in the analysis.

Social skills impairment: Social impairment was measured by the Social Responsiveness 

Scale—Second Edition (SRS-2) published by Western Psychological Services (Constantino 

& Gruber, 2012). Out of the 487 males with FXS, 352 had completed SRS-2 questionnaires. 

Age of the participant when the questionnaire was completed was also documented. The 

SRS-2 provides a continuous measure of social ability, with higher scores indicating more 

severe social impairment. The SRS-2 is an ASD screening instrument that includes five 

subscales: Social Awareness, Social Cognition, Social Communication, Social Motivation, 

and Restricted Interests and Repetitive Behaviors. SRS-2 total scores are highly correlated 

with those from the Autism Diagnostic Observation Schedule (ADOS) (Morrier et al., 
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2017). ADOS is considered a gold standard tool for diagnosing ASD. The present study 

utilized an SRS-2 scoring method optimized for the FXS population (SRSFX) to provide 

the highest combination of sensitivity and specificity (Kidd et al., 2020), with a total raw 

score calculated with 46 out of the 65 original items. The SRSFX total score was treated as a 

continuous outcome variable in the analysis.

2.3 ∣ Statistical analyses

All statistical analyses were performed using SAS 9.4. In total, data from 487 participants 

were included in the analyses. Frequencies were calculated for all major study variables. 

To compare the impact of the two types of FMR1 mosaicism, a series of 2 by 2 (size 

mosaicism [with vs without repeat allele] by methylation [full vs mosaic]) analyses of 

covariance were performed on each of the cognitive and behavioral standardized measures, 

with age at assessment as the covariate. The exact number of participants included in each 

ANCOVA analysis varied depending on the available data on the cognitive and behavioral 

measures. To compare the impact of the two types of mosaicism on the level of ID severity 

(IQ above/below 55) and ASD status (yes/no), logistic regression models controlling for age 

were developed. A p-value less than 0.05 was considered statistically significant.

3 ∣ RESULTS

Data from 487 males with FXS and mosaicism status who were 3 years and older were 

included in this analysis. Seventy-six percent of the participants were White, 11% were 

Hispanic, 8% were African American, 4% were Asian, and 1% were other races/ethnicities. 

Participants' age ranged from 3 to 60 years with a mean (± SD) age of 13.6 years (±8.30). 

Approximately 25% of participants are adults and the median age is 12 years. Based on 

reported genetic testing, 69% (n = 338) had no mosaicism, 11% (n = 52) had size mosaicism 

only, 12% (n = 57) had methylation mosaicism only, and 8% (n = 40) had both size and 

methylation mosaicism (Table 1). Table SS1 provides group means by four combinations of 

the two types of mosaicism.

3.1 ∣ Severity of intellectual disability

Most participants were identified as having moderate ID (59.8%), followed by mild ID 

(24.5%), severe ID (9.8%), borderline ID (3.3%), no ID (2.1%), and profound ID (0.5%). 

As presented in Table 2, controlling for age, methylation mosaicism had a significant 

association with ID severity (F = 12.74; df = 1424; p < 0.001). Individuals with methylation 

mosaicism had significantly less severe ID (N = 87, mean ID severity = 3.41) when 

compared with individuals who were fully methylated (N = 341, mean ID severity = 3.82). 

In contrast, there was no association between size mosaicism and severity of ID.

3.2 ∣ Intelligence quotient

IQ scores were from either the Stanford-Binet (N = 131, range 36–79, mean [± SD] score of 

45.08 [±7.35]) or the Wechsler Intelligence Scale (N = 41, FSIQ range 34–95, mean [± SD] 

score of 58.10 [±12.80]). As presented in Table 3, 135 (78%) participants had an IQ score 

less than 55 (i.e., IQ below mild ID), and 37 (22%) participants had an IQ score above or 

equal to 55 (i.e., equal or higher level than mild ID). As presented in Table 4, controlling for 
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age and type of IQ test, methylation mosaicism was a significant predictor of having IQ of 

55 or above (odds ratio = 3.93 [95% confidence interval:1.48–10.44], p < 0.01). In contrast, 

size mosaicism was not a significant predictor of IQ.

3.3 ∣ Adaptive behavior skills

Participants' Vineland composite scores ranged from 20 to 92 with a mean (± SD) score of 

57.34 (±16.54). As presented in Table 2, controlling for age, methylation mosaicism was 

significantly associated with Vineland composite score (F = 10.04; df = 1169; p = 0.002). 

Individuals with methylation mosaicism received significantly higher Vineland composite 

scores (N = 43, mean [± SD] score of 63.84 [±17.76]) compared with individuals who were 

fully methylated (N = 130, mean [± SD] score of 55.19 [±15.60]), indicating higher adaptive 

skills among participants with methylation mosaicism. In contrast, there was no association 

between size mosaicism and Vineland composite scores.

3.4 ∣ Problem behaviors

ABCFX total scores ranged from 55 to 193 with a mean (± SD) score of 99.54 (±28.36). 

As presented in Table 2, controlling for age, neither methylation mosaicism (p = 0.337) nor 

size mosaicism (p = 0.444) was significantly associated with ABCFX total scores (Table 2). 

Similar analyses for the six ABCFX subscales also showed no significant association with 

mosaicism status.

3.5 ∣ Social skills impairment

SRSFX scores ranged from 14 to 115 with a mean (± SD) score of 67.15 (±20.59). As 

presented in Table 2, controlling for age, methylation mosaicism was significantly associated 

with SRSFX total scores (F = 5.42; df = 1348; p = 0.020). Individuals with methylation 

mosaicism received significantly lower SRSFX scores (N = 72, mean SRSFX score = 

60.85 [±19.01]) compared with individuals who were fully methylated (N = 280, mean 

[±SD] SRSFX score = 68.77 [±20.70]). In contrast, there was no association between size 

mosaicism and SRSFX total scores.

3.6 ∣ ASD diagnosis

Among 487 participants with reported mosaic status, 448 participants with information 

on current ASD diagnosis were included in the logistic regression model. Of these, 225 

participants (50.2%) were diagnosed with ASD (Table 3). Table 5 displays the results of the 

logistic regression. Controlling for age of ASD diagnosis, neither methylation mosaicism 

nor size mosaicism was a predictor of ASD diagnosis.

4 ∣ DISCUSSION

This study assessed the association between two types of mosaicism and cognitive and 

behavioral outcomes from a large sample of males age 3 years and older with full-mutation 

FXS from specialty clinics across the United States. We found that methylation mosaicism 

had a significant positive association with cognitive and behavioral outcomes among males 

with FXS. Compared to participants without methylation mosaicism, those with methylation 

mosaicism had less severe intellectual disability, higher mean intelligence test scores, 
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and adaptive behavior scores, and better social skills. In contrast, the presence of size 

mosaicism was not significantly associated with cognitive and behavioral outcomes. The 

positive association with methylation mosaicism was limited to a similar range of cognitive 

functioning (e.g., mild–moderate ID). However, the difference in the cognitive functioning 

may be sufficient to significantly impact life functioning in some individual cases (Basuta et 

al., 2015; Hagerman et al., 1994; Wang et al., 1996; Wöhrle et al., 1998).

Although our findings suggest that males with FXS and methylation mosaicism have 

significantly lower scores on the SRS, methylation mosaicism was not associated with a 

reduced odds of having an ASD diagnosis. The SRS, even when scoring is modified for 

FXS (SRSFX), still might not accurately predict ASD in individuals with FXS (Aldridge 

et al., 2012). In addition, ASD diagnosis in this analysis is a dichotomous variable, and 

may not be as sensitive to smaller differences in social functioning that are captured in the 

SRSFX score (Kidd et al., 2020). Baker et al. (2019) found that the presence of detectable 

FMR1 mRNA was associated with increased features of ASD in their cohort. This is not 

supported by our results; however, it should be noted that increased FMR1 mRNA could 

be detected in either size or methylation mosaicism and would not distinguish the two 

genotypes. Thus, it is difficult to compare the two results. There may also be differences in 

the two cohorts with respect to the methods for diagnosing ASD that underly the differing 

findings. Neither methylation mosaicism nor size mosaicism were significantly associated 

with problem behaviors as measured by the ABC scores. Both ABCFX total scores and 

six ABCFX sub-domain scores, covering a broad range of behavioral functioning, were not 

significantly associated with either type of mosaicism. Behavior in FXS may not always 

correspond to cognitive function and both behavior itself and the rating of the behavior 

by parents could be more variable than performance-based measures, such as IQ tests. As 

such, a significant relationship between problem behavior and methylation mosaicism may 

be more difficult to identify, even though irritable behavior is seen with higher frequency 

in more severely cognitively impaired individuals with FXS (Eckert et al., 2019). A recent 

report by the aforementioned research group (Baker et al., 2020) found complex differences 

in ABC scores between FXS mosaic groups. For instance, increased FMR1 mRNA levels 

associated with greater irritability in individuals with incompletely silenced full-mutation 

alleles. These data are difficult to compare with our findings. Nonetheless, it underscores the 

potential value of follow-up investigations of the relationship between FMR1 mosaicism and 

behavioral abnormalities that include assessments of FMR1 mRNA levels.

Similar to previous findings, methylation mosaicism was associated with higher cognitive 

scores when compared to males with a fully methylated full mutation. Positive correlations 

between methylation status and FMRP levels have been demonstrated previously (De Vries 

et al., 1996; Pretto, Mendoza-Morales, et al., 2014; Tassone et al., 1999). Methylation is 

the process by which the FMR1 gene is silenced, although in males (females methylate the 

gene as a part of the X-inactivation process) methylation usually does not occur unless the 

expansion to the full mutation has taken place (Hagerman et al., 1994). The unmethylated 

full-mutation allele can produce FMRP, most likely at lower levels than the normal allele. 

Thus, even low levels of FMRP may be important for early fetal brain development and 

ongoing synaptic plasticity and function throughout life (Abitbol et al., 1993; Hinds et al., 

1993). Furthermore, perhaps the lack of methylation of an expansion that would typically 
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be methylated may be a sign of a general tendency for incomplete methylation in many 

cells leading to low levels of FMRP in a significant percent of cells and higher functioning 

(Wang et al., 1996; Wöhrle et al., 1998). This relationship contrasts with size mosaicism, 

where the fraction of cells making FMRP will be only those with the premutation or normal 

allele, which may be a very small percent of cells. These differences may help to explain the 

finding in our study of a relationship between multiple areas of function with methylation 

but not size mosaicism. Future research could investigate the biological basis of the two 

different types of mosaicism and examine whether methylation mosaicism is a signal of 

a more general cellular effect in all or many cells, and whether there are fundamentally 

different effects on FMRP between the two types of mosaicism that then have an impact on 

phenotype.

Published studies have reported mixed conclusions about the functioning of individuals 

with mosaicism, but none have separated mosaicism by type. Most previous studies 

did not distinguish size mosaicism and methylation mosaicism, which may explain the 

variation in findings. In our study, we have 40 participants with both methylation and size 

mosaicism that showed slightly better performance and functioning than the ones with single 

type of mosaicism or no mosaicism. However, when separating the effects of each type 

of mosaicism, only methylation mosaicism was significant. Compared with methylation 

mosaicism, size mosaic alleles in the premutation or normal range can be easily detected 

by polymerase chain reaction (PCR) even when they only represent a small percent of the 

cells, because of the relatively small size and preferential amplification relative to a full 

mutation (Jiraanont et al., 2017). Thus, individuals with size mosaicism may have very small 

percentages of FMRP-producing cells, which might explain the similarities in functioning 

between those with size mosaicism and a fully methylated full mutation observed in this 

study. Until recently, methylation mosaicism had been mainly detected by Southern blotting, 

a technique that is not as sensitive as PCR and likely requires a larger percent of cells 

with mosaicism for its detection (Berry-Kravis et al., 2021). Although methylation PCR 

has recently become available, this method does not allow determination of incomplete 

methylation unless at least 10%–20% of alleles are unmethylated, a percent likely much 

higher than the sensitivity for detection of size mosaic alleles (Aliaga et al., 2016; Filipovic-

Sadic et al., 2010).

Although we utilized a large clinic-based sample from a national registry, participation in 

FORWARD is completely voluntary and only half of participants had complete data and, 

thus, selection bias is possible, and the sample may not be representative of all individuals 

with FXS. Similar to previously published studies of mosaicism in FXS, our study was 

limited by lack of data on the exact percent methylation of full-mutation alleles, percent 

of size mosaicism, FMRP production, and FMR1 mRNA levels. Potential inaccuracy in 

clinician interpretation of the DNA report could be a potential limitation; however, FXS 

DNA reports from standard molecular diagnostic labs are most likely quite accurate. The 

type of mosaicism is usually specified and, in the case of size mosaicism the allele sizes are 

specified, so there is not extensive interpretation needed. Also, if the report did not specify 

methylation or size (premutation/normal allele) mosaicism, the clinicians could just report 

that mosaicism status was unknown. Furthermore, many of the FXS clinicians at the clinics 

participating in FORWARD are geneticists or work with a genetic counselor or a geneticist 
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to read the FXS DNA report. So, it is unlikely that inaccuracy in genetic result reporting 

occurs with sufficient frequency to affect the findings. Future studies with direct molecular 

analyses could further expand and contribute to an explanation of our findings, since FMR1 
mRNA levels cannot be estimated from diagnostic reports of mosaicism. In addition, our 

study focused exclusively on comparing the two types of mosaicisms separately in the 

models; future studies could also examine the interaction between mosaicism types and the 

effect of age on cognitive and behavioral outcomes.

The ASD diagnosis we collected is based on clinician report and there can be variability 

in assessment and interpretation. Future investigations could also explore how FMR1 
mosaicism affects physical/systemic phenotypes of FXS. In addition, the present study used 

two measures for IQ and two versions of the Vineland scales (Vineland-II and Vineland-3) to 

maximize sample size for analysis. The IQ tests employed in this study may not be sensitive 

to the full range of IQ functioning in FXS due to floor effects; thus, z-deviation methods are 

needed to accurately characterize IQ in FXS (Sansone et al., 2014). Future studies expanding 

on the biology of mosaicism could evaluate larger cohorts with z-deviation IQ scores on 

a single measure, such as the SB5, and Vineland scores collected with a single version of 

the measure. In theory, clinicians (and caregivers) reporting on the outcome measures would 

not have been necessarily blinded to the methylation/mosaic status of the participants, and 

this could have influenced their reporting, introducing a potential bias. However, for IQ, the 

bias is not likely to be significant, as this is a direct performance-based measure, and it is 

unlikely that the participants with FXS who are being tested on the measure would have the 

faintest idea what their mosaicism status is or what it means. The psychologists performing 

the IQ test would not have known the DNA result either. For the Vineland assessment, as 

this is in most cases a clinician interview, the interviewed families would have not been 

biased to mosaicism status if the interview was performed correctly. Furthermore, only a 

small proportion of caregivers knows and understands their methylation status. They may 

have known the participant was mosaic, but most would not know the difference between 

size and methylation mosaicism. Thus, it is unlikely that this and other outcomes were 

significantly biased by the lack of blinding.

In conclusion, methylation mosaicism, but not size mosaicism, seems to be associated 

with cognitive/adaptive/social functioning in FXS based on multiple measures. This 

study suggests that methylation mosaicism may be important as a marker for population 

stratification in clinical studies and a factor in clinical trial design that could impact response 

to interventions. Determination of mosaicism and methylation status may be important in 

establishing ways of managing the disorder, for anticipatory guidance in clinic, and future 

research could assess to what extent these cognitive and behavioral differences due to 

mosaicism affect the prognosis of individuals with FXS. Thus, this study identifies a key 

genetic parameter in FXS and it provides directions for future studies with more stringent 

designs to examine the effect of methylation mosaicism on phenotype and prognosis of 

individuals with FXS.
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Refer to Web version on PubMed Central for supplementary material.
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TABLE 4

Logistic regression model (controlling for age and type of intelligence quotient (IQ) test) analysis results for 

outcome variable, IQ levela (≥55 vs. <55), Fragile X Online Registry with Accessible Research Database, 

2012–2019

Variable Df Odds ratio SE p

Intercept 1 — 0.7597 0.0097

Methylation mosaicism 1 3.928 0.4988 0.0061

Size mosaicism 1 0.465 0.5207 0.1411

Type of IQ testb 1 0.869 0.0549 0.0105

Age (in years) 1 0.082 0.4755 <0.0001

a
N = 172 participants with IQ scores were included in the logistic regression model.

b
Two types of IQ tests were included: (1) the Stanford-Binet Scale – Fifth Edition (SB5) and (2) the Wechsler Intelligence Scales.
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TABLE 5

Logistic regression model (controlling for age) analysis results for outcome variable, autism spectrum disorder 

(ASD) diagnosisa, Fragile X Online Registry with Accessible Research Database, 2012–2019

Variable Df Odds ratio SE p

Intercept 1 — 0.2815 0.4414

Methylation mosaicism 1 1.170 0.2517 0.5326

Size mosaicism 1 0.825 0.2534 0.4475

Age (in years) 1 0.993 0.0112 0.5197

a
ASD diagnosis was documented based on clinician report, and N = 448 participants with ASD diagnosis were included in the logistic regression 

model.
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